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I. INTRODUCTION

A convenient representation for the lowest-order hadronic contribution to the anomalous
magnetic moment a

µ

= (g� 2)/2 in terms of an integral over euclidean momentum is given
by [1, 2]

aLO,HVP
µ

= lim
q

2
max

!1
aLO,HVP
µ

[q2
max

] , (1.1)

aLO,HVP
µ

[q2
max

] = 4↵2

Z
q

2
max

0

dq2 f(q2) ⇧̂(q2) ,

where m
µ

is the muon mass,

f(q2)=m2
µ

q2Z3(q2)
1� q2Z(q2)

1 +m2
µ

q2Z2(q2)
,

Z(q2)=
⇣q

(q2)2 + 4m2
µ

q2 � q2
⌘
/(2m2

µ

q2) , (1.2)

and ⇧̂(q2) ⌘ ⇧(q2) � ⇧(0) is the subtracted hadronic vacuum polarization. The vacuum
polarization ⇧(q2) is defined from the hadronic electromagnetic current two-point function,
⇧

µ⌫

(q), via

⇧
µ⌫

(q) ⌘
Z

d4x eiqxhJ
µ

(x)J
⌫

(0)i =
�
q2�

µ⌫

� q
µ

q
⌫

�
⇧(q2) , (1.3)

with J
µ

(x) the hadronic electromagnetic current. The form on the right-hand side of
Eq. (1.3) follows from current conservation and rotational symmetry.

While, in principle, a lattice computation of the hadronic vacuum polarization1 is straight-
forward, it turns out that a very high accuracy is needed in the region around q2 ⇠ m2

µ

/4.
The reason is that the integrand of Eq. (1.1) is strongly peaked in that region, as illustrated
in Fig. 1. In e↵ect, the weight function f(q2) acts as a “magnifying glass” of the low-
momentum region, where it is hard to obtain lattice data points with small errors. We note
that the data points shown in Fig. 1 have been obtained with all-mode averaging (AMA)
[3], and thus have errors much reduced in comparison with the state of the art of only a few
years ago.2

Figure 1 also suggests that finite-volume e↵ects may cause a significant systematic error,
because it is the finite-volume quantization of momenta that makes the number of data points
in the low-q2 region so sparse. It is our aim in this article to investigate this quantitatively. A
more phenomenological study of finite-volume e↵ects appeared in Ref. [5], and a preliminary
account of the present work appeared in Ref. [6]. 3

We will restrict ourselves to a rectangular volume L3 ⇥ T with periodic boundary con-
ditions in all directions, and we will be interested in the case that T > L, as is the case
for all lattice computations of the hadronic vacuum polarization. While twisted boundary
conditions have been considered [7, 8], a generic twist vector reduces the symmetry group of

1 Or, at least, its connected part.
2 See, for example, Fig. 1 of Ref. [4].
3 The results reported in Ref. [6] were based on an incorrect version of Eq. (2.12), and did not take into

account taste splittings.
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2015-2016 Results

Using the Asqtad data we published a systematic study 
of the finite volume effects

(PRD93 054508, 2016)
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2015-2016 Results

With AMA approach, we generated data:
 a~0.06fm Asqtad ensembles, mπ ~220MeV
a~0.06fm HISQ ensembles, mπ ~300 MeV. 

Currently running on the superfine HISQ ensemble at the physical pion 
mass (to be finished before the end of the cycle).

Asqtad, 643x144, a~0.06fm HISQ, 483x144, a~0.06fm



2015-2016 Results
On the lattice no rotation symmetry so the VP tensor is written in 

terms of five different irreps of the cubic group:

Second, the rotation group is reduced to the group of cubic rotations, defined by the
irreducible representation (irrep) of 90-degree rotations on the spatial components of mo-
mentum. While the infinite-volume form (1.3) contains only one scalar function, this is
no longer the case in our finite volume. The tensor ⇧

µ⌫

contains five di↵erent irreducible
sub-structures:

(2.7)A1:
P

i

⇧
ii

= (3q2 � ~q 2)⇧
A1 ,

A44
1 : ⇧44 = (~q 2)⇧

A

44
1

,

T1: ⇧4i = �(q4qi)⇧T1 ,
T2: ⇧

ij

= �(q
i

q
j

)⇧
T2 , i 6= j ,

E: ⇧
ii

�
P

i

⇧
ii

/3 = (�q2
i

+ ~q 2/3)⇧
E

,

where ~q 2 =
P

i

q2
i

. Equation (2.7) defines five di↵erent scalar functions ⇧
r

, r 2
{A1, A

44
1 , T1, T2, E}, which are unrelated by symmetry, since the sub-structures shown here

do not transform into each other under cubic rotations. For the spatial diagonal elements,
Eq. (2.7) implies that

⇧
ii

= (�q2
i

+ ~q 2/3)⇧
E

+ (q2 � ~q 2/3)⇧
A1 . (2.8)

The irrep A1 occurs twice in Eq. (2.7), and we distinguish the two with the notation A1

and A44
1 . Unbarred scalar functions, ⇧

r

, r 2 {A1, A
44
1 , T1, T2, E}, are defined analogously by

replacing components of ⇧
µ⌫

by ⇧
µ⌫

on the left-hand side of Eq. (2.7). The WTI implies
some relations between these functions. In particular,

P
µ

q
µ

⇧
µ4 = 0 implies that

q4~q
2
⇣
⇧

T1 � ⇧
A

44
1

⌘
= 0 , (2.9)

while
P

µ

q
µ

⇧
µi

= 0 implies (choosing i such that q
i

6= 0)

~q 2 (�⇧
T2 +

1

3
⇧

E

+
2

3
⇧

A1) + q2
i

(⇧
T2 � ⇧

E

) + q24 (⇧A1 � ⇧
T1) = 0 . (2.10)

The unbarred ⇧
r

satisfy the same relations.
We note that these scalar functions can still be functions of all cubic invariants that can

be made out of q
µ

. Invariants with dimension larger than 2, like
P

i

q4
i

have coe�cients that
are positive power of the lattice spacing, so we will assume that these are negligibly small
at the values of q

µ

we are interested in. That still leaves us with the invariants ~q 2 and q24.
8

Empirically, we find, however, that the functions ⇧
r

are a function of q2 (or, q̂2, see below)
to a high degree of accuracy.

The unbarred ⇧
r

, r 2 {A1, A
44
1 , T1, T2, E}, are more singular than the barred ⇧

r

. Using
Eqs. (2.6) and (2.7), we find that

⇧
A1 = ⇧

A1 +
1

q2

✓
⇧

s

(0) +
q24~q

2

q2(3q2 � ~q 2)
(⇧4(0)� ⇧

s

(0))

◆
, q2 6= 0 , (2.11)

⇧
A

44
1

= ⇧
A

44
1
+

1

q2

✓
⇧

s

(0) +
~q 2

q2
(⇧4(0)� ⇧

s

(0))

◆
, ~q 2 6= 0 ,

⇧
T1 = ⇧

T1 +
1

q2

✓
⇧

s

(0) +
~q 2

q2
(⇧4(0)� ⇧

s

(0))

◆
, q4qi 6= 0 for some i ,

8 Odd powers of q4 are excluded because of axis inversion symmetry.
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Requiring ⇧
µ⌫

(q) to be symmetric in the indices µ and ⌫,3 and assuming an infinite, isotropic
hypercubic lattice, the WTI implies the most general form4

⇧
µ⌫

(q) =
�
�
µ⌫

q̂2 � q̂
µ

q̂
⌫

�
⇧(q) (2.3)

+

 
�
µ⌫

 
X

⇢

q̂4
⇢

+ q̂2
µ

q̂2

!
� q̂3

µ

q̂
⌫

� q̂
µ

q̂3
⌫

!
⇧0(q) + . . . ,

where q̂2 =
P

µ

q̂2
µ

. While ⇧(q) is dimensionless, ⇧0(q) has mass dimension -2. That means
that it has to vanish at least quadratically with the lattice spacing a; for a ! 0, the
expression in Eq. (2.3) has to reduce to Eq. (1.3). Here, we will be only interested in the
vacuum polarization for very small momenta, and we will thus assume that we can ignore
the scaling violations on the second line of Eq. (2.3).

When we restrict ourselves also to a finite volume in the form of a hypercubic box of
dimensions L3 ⇥ T with periodic boundary conditions, Eq. (2.3) is not the most general
form of ⇧

µ⌫

(q) if the hypercubic symmetry is further broken by choosing L 6= T , as we will
discuss next.

A. Group theory

When we go to a finite periodic volume L3 ⇥ T with L 6= T ,5 two things happen. First,
momenta are quantized,

q
i

=
2⇡n

i

L
, i = 1, 2, 3 , q4 =

2⇡n4

T
, (2.4)

where the n
µ

are integers. The WTI (2.1) does not restrict the vacuum polarization at zero
momentum, and in general, in a finite volume, ⇧

µ⌫

(0) 6= 0.6 Rather, rotational symmetry
implies that it takes the form

⇧
µ⌫

(0) = �
µ⌫

(⇧
s

(0) + �
µ4 (⇧4(0)� ⇧

s

(0))) , (2.5)

with ⇧
s

(0) and ⇧4(0) constants.7 For T � L one expects that ⇧4(0) ⌧ ⇧
s

(0). It thus
makes sense to consider a subtracted vacuum polarization

⇧
µ⌫

(q) =
X

�

P T

µ

(⇧
�

(q)� ⇧
�

(0))P T

�⌫

(2.6)

= ⇧
µ⌫

(q)� P T

µ⌫

⇧
s

(0)� P T

µ4P
T

4⌫ (⇧4(0)� ⇧
s

(0)) ,

P T

µ⌫

(q) = �
µ⌫

� q
µ

q
⌫

q2
,

where P T is the transverse projector. We projected the subtracted vacuum polarization so
that it still satisfies the WTI after the subtraction of its value at zero momentum. Of course,
without the subtraction, this projection has no e↵ect, since

P
µ

q
µ

⇧
µ⌫

(q) =
P

⌫

⇧
µ⌫

(q)q
⌫

= 0.

3 We will always use only the Noether current in Eq. (1.3).
4 See also Ref. [9].
5 We will always consider the case that T > L.
6 This, and some of the other observations that follow below, have also been noted in Ref. [10].
7 For an estimate using ChPT, see the appendix.

4

As the VP tensor does not necessarily vanish at zero momentum we 
consider the subtracted/projector tensor as well:



2015-2016 Results
Using ChPT to examine the FV effects:

FV SChPT Asqtad

[cf., the second line of Eq. (2.3)] can be neglected, as
mentioned before. The only scaling violations we take into
account are those represented by replacing qμ by q̂μ,
defined in Eq. (2.2), and the taste splitting of the
Nambu-Goldstone boson (NGB) masses present in the
spectrum of lattice QCD with staggered fermions at non-
zero lattice spacing. We note that the numerical difference
between qμ and q̂μ is tiny, for momenta up to 1 GeV, for the
lattice ensemble we consider in this article.

B. Chiral perturbation theory

The heuristic picture is that finite-volume effects are
caused by hadrons traveling “around the world” (i.e.,
seeing the periodic boundary conditions). The Euclidean
propagator for a particle with massm traveling a distance L
falls like e−mL. Therefore, finite-volume effects are pre-
dominantly felt by the pions, because they are the lightest
hadrons present in the theory, and it is thus useful to
consider finite-volume effects in ChPT, the effective field
theory for pions.10

It is well known that leading-order ChPT does not
describe the hadronic vacuum polarization very well
already at very low q2 and pion masses [12].11 The intuitive
reason is that resonance contributions, like that from the ρ,

are important, but only higher orders in ChPT “know”
about such resonances (through low-energy constants at
higher order). However, by the same argument, ChPT
should do much better describing differences caused only
by finite-volume effects, because those should be domi-
nated by pions, and quite suppressed for all other hadrons.
Here we assume that it is reasonable to study finite-volume
effects using leading-order ChPT for pions only. We then
compare the predictions from ChPTwith lattice data, to see
how this assumption fares, in Sec. III.
The lattice data we consider have been generated on

ensembles with three flavors of sea quarks, up, down and
strange. Therefore, at lowest order in ChPT, ΠμνðqÞ
receives loop contributions from all NGBs for a three-
flavor theory. However, since the kaon mass is always
much larger than the pion mass, we calculate only the pion
loops in ChPT, and compare the result with the lattice data.
Any discrepancies may be due to kaon loops, higher
orders, etc.
The appendix provides some details about the ChPT

calculation, and generalizes it to the case of twisted
boundary conditions. For periodic boundary conditions
the leading-order contribution from pions to the connected
part of the vacuum polarization is

ΠμνðqÞ ¼
10

9
e2

1

L3T

X

p

!
4 sin ðpþ q=2Þμ sin ðpþ q=2Þν

ð2
P

κð1 − cospκÞ þm2
πÞð2

P
κð1 − cosðpþ qÞκÞ þm2

πÞ

− δμν

"
2 cospμ

ð2
P

κð1 − cospκÞ þm2
πÞ

#$
; ð2:12Þ

where e is the electron charge and mπ is the pion mass. We
have used a lattice regulator in order to define this
expression, and all dimensionful physical quantities in
Eq. (2.12) are expressed in units of the lattice spacing. It
is straightforward to verify that Πμνð0Þ ¼ 0 when the
momentum sum in Eq. (2.12) is replaced by a momentum
integral, by partial integration on the first term in the
integral. In the appendix we show that in finite volume
Πμνð0Þ ≠ 0, as a simple application of the Poisson resum-
mation formula, cf., Eq. (A16).
Since in the next section we compar ChPT with lattice

data obtained with “rooted” staggered fermions, we should
amend Eq. (2.12) to what we would have obtained using
rooted staggered ChPT [14,15]. Staggered fermions lead to
“taste symmetry breaking,” splitting the degenerate pion
spectrum due to lattice artifacts, and this turns out to be a

significant effect even at low energy, and therefore we take
this effect into account when comparing with lattice data.12

We also use the momenta q̂ introduced in Eq. (2.2) instead
of q, but this amounts to a difference of less that 0.1% even
at q2 ¼ 1 GeV2 for the data we consider in Sec. III.
It is very simple to adapt our result (2.12) [or Eq. (A11)

in the appendix] to the staggered case. To lowest order in
rooted staggered ChPT, all we need to do is to replace the
summand in Eq. (2.12) [or Eq. (A11)] by a weighted
average over the taste-split pion spectrum with masses
mπ ¼ mP, mA, mT , mV and mI , with, respectively, weights
1=16, 1=4, 3=8, 1=4, and 1=16. We refer to this version of
our result as (lowest-order) SChPT.

III. LATTICE DATA

In this section, we consider lattice data for the connected
part of the light-quark hadronic vacuum polarization for the
asqtad ensemble generated by the MILC collaboration [17]

11For a discussion of ΠV−A, see Ref. [13].

10See Ref. [11] for an introduction to applications of ChPT to
lattice QCD, including ChPT in a finite volume, partial quench-
ing, and staggered ChPT, as well as references. 12For an introduction to rooted staggered fermions, and further

references, see Ref. [16].

AUBIN, BLUM, CHAU, GOLTERMAN, PERIS, and TU PHYSICAL REVIEW D 93, 054508 (2016)
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2015-2016 Results
Comparison of Asqtad data & SChPT of the difference between 

the subtracted and unsubtracted A1 irrep:



2015-2016 Results

not to lattice spacing e↵ects.18

We fit the data for ⇧
A1 and ⇧

A

44
1

with a [0, 1] Padé [19], or a quadratic conformally
mapped polynomial [20] (both are three-parameter fits), on a low-q2 interval, looking for the
number of data points in the fit that gives the highest p-value. We then compare the results.
In all the fits presented below, the number of data points in the fit turns out to be six, so
all fits have three degrees of freedom, and they never explore data beyond q̂2 = 0.3 GeV2.
As we have shown before [4, 20], neither of these two fits can be trusted to give results
with a better accuracy than a few percent even in infinite volume for aLO,HVP

µ

, but we will
assume that other systematics are the same for both representations, so that the di↵erences
considered here measure primarily finite-volume e↵ects. From the [0, 1] Padé fits, we find

aLO,HVP
µ,A1

[0.1 GeV2] = 6.8(4)⇥ 10�8 , (3.1)

aLO,HVP
µ,A

44
1

[0.1 GeV2] = 7.5(3)⇥ 10�8 .

From the quadratic conformally mapped polynomial fits, we find

aLO,HVP
µ,A1

[0.1 GeV2] = 6.8(4)⇥ 10�8 , (3.2)

aLO,HVP
µ,A

44
1

[0.1 GeV2] = 7.9(4)⇥ 10�8 .

Both types of fit give consistent results for each representation, but the two di↵erent rep-
resentations di↵er from each other by about 10-15%. This strongly suggests that with a
pion mass of 220 MeV a spatial volume with L = 64a = 3.8 fm, or m

⇡

L = 4.2, is not large
enough if the aim is to compute aLO,HVP

µ

with sub-percent accuracy.

IV. CONCLUSION

In this article, we explored finite-volume e↵ects in the connected part of the hadronic
vacuum polarization, and gave some examples of how these e↵ects propagate to the corre-
sponding contribution to the muon anomalous magnetic moment aLO,HVP

µ

. We found that
even in computations with small pion masses and m

⇡

L > 4, the systematic e↵ects due to
finite volume can be of order 10%. This is consistent with the phenomenological estimate
of Ref. [5].

We also found that ChPT does a good job of describing finite-volume e↵ects already
at lowest order, even though it is well known that lowest-order does not provide a good
description of the vacuum polarization itself already at the low values of q2 relevant for
aLO,HVP
µ

. ChPT also shows that the subtracted vacuum polarization ⇧
µ⌫

(q) = ⇧
µ⌫

(q) �
⇧

µ⌫

(0) is significantly closer to the infinite-volume result than ⇧
µ⌫

(q) itself. Projecting on
irreducible representations of the cubic group, we found that in ChPT the A1 projection
(after subtraction of ⇧

µ⌫

(0)) and other representations (for which the subtraction makes
very little di↵erence, and is not visible in the lattice data) straddle the infinite-volume result.
This leads to the question of how to quantify the systematic error due to finite volume in
practice. A conservative error estimate would take half the di↵erence between the value of
aLO,HVP
µ

computed from ⇧
A1 and the values computed from other representations, e.g. ⇧

A

44
1
.

Because the infinite-volume result for ⇧, according to ChPT, lies between ⇧
A1 and ⇧

A

44
1
,

18 More than 80% of aLO,HVP
µ comes from the momentum region below 0.1 GeV2 [20].
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[0,1] Padé fit:

Quad. conformally mapped poly:

Extracting the g-2 for different irreps gives results that differ by 
10-15%:



The primary concern regarding systematics is with regards to the 
finite volume effects. 

When those are under control then we will then apply our 
various model-independent fits (Padés, conformal polynomials) to 

extract g-2.

Our primary focus for the upcoming year is a fully systematic 
study of the FV effects to hopefully remove them using SChPT.

Remaining issues



2+1+1-flavor MILC HISQ configurations

HISQ Ensembles

a (fm) ml/ms m⇡ L3 ⇥ T m⇡L J/psi core-hrs
(MeV) (⇥106)

⇡ 0.12 1/10 218 243 ⇥ 64 3.2 0.27
⇡ 0.12 1/10 217 323 ⇥ 64 4.2 0.64
⇡ 0.12 1/10 217 403 ⇥ 64 6.3 1.26

⇡ 0.12 1/27 134 483 ⇥ 64 3.9 2.17
⇡ 0.09 1/27 128 643 ⇥ 96 3.7 7.73
⇡ 0.06* 1/27 136 963 ⇥ 192 4.0 26.1

Table 1: MILC ensembles to be used during the upcoming allocation, to add
to the results shown above. Timings assume running on 50 configurations
per ensemble and with only periodic boundary conditions. The a = 0.06
ensemble is starred because this will be at least half-finished by the end of
the current allocation period, and as such the number shown is an estimate
of what will be needed in the upcoming year to finish the run.

with a ⇡ 0.06fm, a volume of 483 ⇥ 144, and a pion mass of roughly 300
MeV. Currently we are running on the 963 superfine HISQ ensemble (at the
physical pion mass), and plan to finish that ensemble in the upcoming cycle.
More importantly, we show in Fig. 3 the di↵erence between the A1 and A44

1

irreps (both on the Asqtad ensemble as well as that calculated in staggered
chiral perturbation theory), and studied in Ref. [24]. This di↵erence is
entirely due to finite volume e↵ects, and can (within this level of precision)
be described using chiral perturbation theory.

One can also use the vacuum polarization to determine the electron and
tau g�2’s, as well as the leading hadronic contribution to the electromagnetic
running coupling. Given the importance of this test of the Standard Model,
and the application to other physical quantities, our calculation’s impact,
and the goals of the USQCD collaboration, our proposal clearly meets the
criteria of a Class A proposal.

Proposal

We have completed running on the Asqtad ensembles as well as the a =0.06
fm m⇡ ⇡ 300 MeV HISQ ensembles with our e�cient, optimized code (in
the Columbia Physics System) which implements all-mode averaging [31]
(AMA) for improved statistics. We will have completed running on at least
half of the physical pion mass HISQ ensembles before the current allocation

6

Proposal 

We plan to use the direct-double subtraction method [32,33] and a hybrid AMA-A2A 
approach (RBC).

The times above correspond to 50 configurations on each ensemble (3000 eigenvectors on the 
smaller volume, 2000 eigenvectors on the larger volume)

We’ll do 4 sets of exact+sloppy CG inversions per configuration



Questions from SPC



1) What is the expected precision for the currently proposed calculation?
What is the long-term goal?

Sub-percent statistical errors using AMA-A2A and DDS

If SChPT can be used to correct lattice data: 1-3% FV errors.

Long-term goal: <1% error

2) How well do you expect to be able to control finite volume effects based 
on the study you propose here?

We hope to eliminate the FV error analyzing each irrep 
separately. It is unclear if this can be accomplished without a 

larger box size



3) Table 1 lists a $48^3\times 96$ ensemble for $a=0.12$ fm with
$m_l/m_s =0.1$, however, there is no such ensemble.  There is one with
volume $40^3\time 64$.  Is that the one you want to use and, if so, does
that change your request?

This was a typo: it reduces the time by 2M J/psi core-hrs



4) In your 2015 request, you proposed to study six ensembles.  They covered the lattice spacings 0.09 
and 0.06 fm, with m_l/m_s = 1/5, 1/10, and 1/27.  We realize you did not get all the time requested; 
however, we would like to know the status of your running.  The current proposal states the 0.06 fm 
300 MeV pion running is done, and that half of physical mass ensembles will be done by end of 
allocation. However, that does not seem to cover status of m_l/m_s = 1/5, 1/10, a=0.09 fm ensembles, 
or the a=0.06 fm, m_l/m_s = 1/10 ensemble.  So, can you please provide us with a table covering all the 
ensembles from Tables 1 in both the current and 2015 proposals with number of configurations run, 
expected to be run by end of current allocation, and desired to be run in next allocation?

During the current period, our finite volume analysis showed 
considerable FV erects for the lowest momentum points. 

We re-evaluated our short-term goals to focus on this error. 

Currently we are finishing the physical point ensemble for 
the remainder of this year, and the remaining ensembles we 

planned on studying last year will not be used in the 
upcoming period.



5) Can you compare your approach with that of other groups both inside
USQCD and beyond?

Our priority is to understand the systematics as best as 
possible, as the errors on the final result for the muon g-2 

are crucial.

As it is for other groups, our long-term goal is to obtain a 
reliable value for the muon g-2, while in the short term we 

are focused on reducing this uncertainties.



6) Related, your proposal and the Laiho proposal use some of the same HISQ 
ensembles.  Have you explored any possible cost savings available 
through sharing common propagators or correlation functions? 

Our methods of AMA+AMA differ significantly with those of Laiho, and 
hence there not much to save. For example, with AMA we will use an order 
of magnitude fewer configurations. It may be possible to work together on 

generating eigenvectors, which could significantly speed up their 
calculation through deflation.

7) With the new resources at JLab being as yet unspecified, we would like to know 
if you are in a position to use them efficiently if they are a) cpu, b) GPU, c) KNL. If 
you are not, that is fine, but it will help in our allocation decisions to know this 
information from every proposal.

Our code is part of the CPS code base, and is ready to run efficiently on 
new cpu resources at JLAB. We could also quickly take advantage of RBC/

UKQCD expertise with KNL to port our code to this architecture.



Summary

As the finite volume effects are considerable, it is important to be able 
to remove that systematic reliably. 

With our proposal we will test explicitly how well the SChPT can be 
used to correct this systematic, and thus by the end of the upcoming 

allocation have a reliable (and hopefully small) finite volume uncertainty 
(1-3%).

Our request:

38.2 M J/psi core-hrs

Storage: 96 TB disk, 96 TB tape = 4.4 M J/psi eq. core-hrs.


